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Abstract

The fundamental challenge of small inter-person vari-

ation requires Person Re-Identification (Re-ID) models to

capture sufficient fine-grained features. This paper pro-

poses to discover diverse discriminative visual cues with-

out extra assistance, e.g., pose estimation, human parsing.

Specifically, a Class Activation Maps (CAM) augmenta-

tion model is proposed to expand the activation scope of

baseline Re-ID model to explore rich visual cues, where

the backbone network is extended by a series of ordered

branches which share the same input but output comple-

mentary CAM. A novel Overlapped Activation Penalty is

proposed to force the current branch to pay more atten-

tion to the image regions less activated by the previous

ones, such that spatial diverse visual features can be dis-

covered. The proposed model achieves state-of-the-art re-

sults on three Re-ID datasets. Moreover, a visualization ap-

proach termed ranking activation map (RAM) is proposed

to explicitly interpret the ranking results in the test stage,

which gives qualitative validations of the proposed method.

1. Introduction

Person Re-Identification (Re-ID) aims to identify a par-

ticular person across multiple non-overlapping cameras. It

has important application prospects, e.g., large-scale person

tracking and person search in video surveillance. Although

significant progress has been achieved in the last decade, it

is still confronted with many challenges, e.g., various back-

ground clutters, large variations of illuminations and camera

views and articulated deformations of the human pose.

Moreover, the small inter-person variation makes it dif-

ficult for the Re-ID models to distinguish persons with sim-

ilar appearance based on a small number of visual cues. As

illustrated in Fig. 1(a), all the top 5 images are not the same

identity with the queried one, as the baseline model mainly
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Figure 1: (a) and (b) show the proposed RAMs. The maps

highlight the discriminative visual cues used by the base-

line and the proposed model to rank the gallery images, re-

spectively. Images with green and red boundary denote true

positive and false positive. In (c), the 1st row shows images

of the same ID and the CAM in the 2nd row highlights the

image regions, i.e., handbag, used by the baseline model to

identify this person. The CAM in 3rd-4th rows show the

proposed method further discover more visual cues.

pays attention to the black shorts, but neglects the other

key discriminative visual cues, e.g., white shoes and bag

strap. To further illustrate the point, a diagnostic analysis

is conducted on the baseline model. The analysis is based

on a recently proposed visualization analytical tool, i.e.,

CAM [55]. The 2nd row in Fig. 1(c) presents the CAM of

the person in Market1501 [49], which shows that the base-

line model tends to identify this person based on a small

number but discriminative cues, i.e., handbag. The small

number of cues may be sufficient for distinguishing person

IDs in the training set, however, it is essential for a Re-ID

model to discover abundant discriminative visual cues so as

to form a full-scale characteristic of each identity.
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To discover abundant discriminative features from the

limited training data, 1) some methods adopt particularly

designed regularizations or constraints and proposed var-

ious metric learning losses beyond the classification loss,

such as triplet loss [13], quadruplet loss [5], and group

similarities learning [4]; 2) some methods devote to dis-

cover more fine-grained visual cues spread over the whole

human body, where multi-branch networks are often pro-

posed to learn fine-grained features from multiple body

parts. These parts are obtained through either rigid spatial

divisions [42, 26, 46, 7], latent parts localization [23, 27],

pose estimation[39, 44, 33], human parsing [19], or atten-

tion map [48]; 3) some methods attempt to increase varia-

tions in the training data with data augmentation, e.g., ran-

dom cropping (mirroring) [22], synthesized samples [52] by

Generative Adversarial Network (GAN) [11] or adversari-

ally occluded samples [14].

The proposed approach belongs to the second class in

the above categorization which focuses on discovering dis-

persive fine-grained visual feature over whole human body.

However, previous work needs an extra step for body parts

localization with rigid spatial division, pose estimation or

learning latent parts, which increases the complexities and

uncertainties of algorithms. Inspired by the CAM in the

2nd row of Fig. 1(c), we propose to expand the activation

scope of the baseline model, so that sufficient visual fea-

tures can be learned over whole human body. Here, the vi-

sual discriminative regions are located by Class Activation

Maps [55], thus the proposed model is named Class Activa-

tion Maps Augmentation (CAMA). In the CAMA, the back-

bone model is extended by a series of ordered branches,

where a new loss function named Overlapped Activation

Penalty (OAP) is introduced to force current branch to dis-

cover diverse visual cues from those regions less activated

by the previous branches, so as to acquire diverse discrim-

inative fine-grained features. To better interpret the rank-

ing results, a visualization method i.e., Ranking Activation

Maps, is proposed to explicitly visualize the associated vi-

sual features between the query and the gallery images in

the ranking list. To the best of our knowledge, it is the first

attempt to interpret the ranking results of person Re-ID.

The main contributions of this paper can be summarized

as threefold. (1) An end-to-end multi-branch model is pro-

posed to discover sufficient and diverse discriminative fine-

grained features flexibly, without the need of rigid spatial

division or extra part localization modules. (2) A novel loss

function, i.e., OAP, is proposed to force different branches

in the CAMA to learn complementary visual feature from

different body regions effectively. (3) Extensive experimen-

tal results show that a superior performance can be achieved

over other state-of-the-art methods on three large datasets,

where a new visualization method, i.e., RAM, is proposed

to interpret the ranking results of Re-ID for the first time.

2. Related Work

Person Re-ID. Most person Re-ID methods focus on learn-

ing an effective feature extractor [42, 40], or metric that

pulls the same identities closer while pushes different ones

away [9, 13, 5, 25, 36, 4]. Being first introduced in [46, 25],

the deep learning based methods have been dominating the

person Re-ID community.

The metric learning based methods adopt some regular-

izations or constraints to guide the Re-ID model to obtain a

set of diverse features, such as triplet loss[13], group simi-

larities learning [4] or quadruplet loss [5], where the essen-

tial factor lies in the quality of hard sample mining.

To learn an effective feature extractor to capture abun-

dant discriminative features, some methods aggregate

global and local representation and show promising perfor-

mances. They leverage explicit pose estimation [2], human

parsing [10], or Spatial Transform Networks (STN) [16] to

locate body parts [39, 44, 33, 19, 27, 23], or directly use

the predefined rigid parts (horizontal stripes or grids) for

fine-grained feature extraction [42, 26, 46, 7, 1]. Compared

to the above methods, the proposed approach does not de-

pend on any external parts localization models. However,

the global representation extracted from the top layer of the

person Re-ID classification network does not adequately re-

tain visual clues that are crucial for person Re-ID, e.g., fine-

grained attributes (sunglasses, shoes) and some texture/edge

features at lower semantic level [23, 3, 14]. Therefore, some

researchers [3, 43] propose to fuse discriminative visual fea-

tures at multiple semantic levels.

Some other methods, e.g., Huang et al. [14] augment the

variation of training data by generating occluded samples;

Song et al. [38] introduce segmentation masks as guidance

to extract features invariant to background clutters; Shen

et al. [34] aims to improve the post-processing (i.e., re-

ranking [53]) to make it possible to learn in an end-to-end

manner. Moreover, instead of measuring similarity with Eu-

clidean distance, a Kronecker Product Matching module is

employed to match feature maps of different persons [36].

Similar idea can alse be found in [37].

Network Visualization. Convolutional neural networks

(CNN) are usually treated as a black-box function that maps

a given input to a task-specific output. There has been much

work devoted to explore how the CNN works, e.g., Decon-

vNet [47] visualizes what patterns activate a specific neu-

rons, Network Inversion [30] sheds light on the information

represented at each layer by inverting them to synthesize an

input image, and Class Activation Map (CAM) is proposed

to visualize the input image regions used when CNN mak-

ing decisions [55]. In this work, we enhance the capability

of Re-ID model for capturing diverse fine-grained knowl-

edge through inspecting the intrinsic working mechanisms

of a trained network, which is closely related with current

researches on network interpretability and visualization.
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Figure 2: The CAMA model with 3 branches. The image with label t passes through ResNet-50 and Batch Normalization

(BN) layer to form feature maps F i ∈ R
h×w×d, which are weighted summed (Eq. (4)) by W i ∈ R

d×C to obtain the CAM,

i.e., M i ∈ R
h×w×C . Then Global Average Pooling (GAP) is applied on M i to obtain the class scores Si ∈ R

1×C , where C

is the number of training classes. The t-th channel of M i, i.e., M i
t ∈ R

h×w, highlights the image regions used by branch i to

identify the input image. In (a), the M i
t s are used to calculate the Overlapped Activation Penalty Loap so that the activation

regions in different branches are non-overlapping. In (b), the identification losses Li
ids are summed to obtain Lid. The W is

in branches do not share parameters and the ⊙ in (a) denotes element-wise multiplication.

3. Methods

This section presents the technical details on the CAMA

model. As shown in Fig. 2, the CAMA model is a multi-

branch (MltB) neural network including a backbone and

a number of ordered branches. Without the need of extra

parts localizations and exhaustive searching of informative

regions, we propose to utilize a technique on visual expla-

nation of deep learning, i.e., the CAM [55], to indicate the

locations of informative parts and the richness of features

embedded in the Re-ID model (Sec. 3.1). The new extended

branches are guided by the a novel loss function called OAP

to discover discriminative features from those regions less

activated by the previous branches (Sec. 3.2). Finally, a vi-

sualization technique termed RAM is proposed to interpret

the ranking results of a query image(Sec. 3.4).

3.1. Baseline Model

The forward propagation of the ID-discriminative em-

bedding (IDE) model specified in [50] is as follows. Firstly,

the input image passes through the CNN to obtain a tensor

T ∈ R
h×w×d, which can be interpreted as dense h × w

grids of d-dimensional local features T (x, y) ∈ R
1×d of

spatial location (x, y), or dense d channels of feature map

Tk ∈ R
h×w, then global average pooling (GAP) is applied

on T to obtain a feature vector, finally a fully-connected

(FC) layer is used to transfer the feature vector into the class

scores S ∈ R
1×C . Here C is the number of training classes.

The above procedure can be formulated as

S = FC(GAP(T )) (1)

The work [45] proposes to add a batch normalization (BN)

layer [15] after the global average pooling layer, which can

be formulated as

S = FC(BN(GAP(T ))) (2)

where BN is the vanilla batch normalization [15] for a 1D

input. The Eq. (2) is denoted as IDE+BN in this paper.

Since IDE+BN achieves better performance over the IDE,

we adopt IDE+BN as the baseline. It is noted that the BN

and the GAP are linear transformations, thus the order of

these two transformations can be exchanged without chang-

ing the final results. Thus Eq. (2) is further formulated as

S = FC(BN(

∑

x,y T (x, y)

h× w
))

= FC(

∑

x,y BN(T (x, y))

h× w
)

= FC(

∑

x,y F (x, y)

h× w
) = FC(GAP(F )) (3)

where F (x, y) = BN(T (x, y)) and F ∈ R
h×w×d is a ten-

sor. Note that without this re-formulation, the following

mentioned CAM can not be conveniently integrated with

the BN augmented baseline, i.e., Eq. (2).

Class Activation Maps [55]. In Eq. (3), after applying

GAP on F , a feature f is obtained. Then a FC layer

W ∈ R
d×C is used to transfer f into the class scores

S ∈ R
C . Since Wc ∈ R

d×1 is a weight vector that gen-

erates a score Sc for class c (c ∈ {1, 2, ..., C}). We can
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obtain Sc by

Sc = f ·Wc =

d
∑

k=1

Wc,k × fk

=

d
∑

k=1

Wc,k

1

h× w

∑

x,y

Fk(x, y)

=
1

h× w

∑

x,y

d
∑

k=1

Wc,kFk(x, y) (4)

where Wc,k denotes the k-th element of Wc and (x, y) indi-

cates the spatial location. The class activation map of class c

is defined as Mc, where Mc(x, y) =
∑d

k=1 Wc,kFk(x, y).
Mc(x, y) indicates the score that local feature F (x, y) ∈
R

1×1×d contributes to Sc.

Suppose that t is the target class of the input image, Mt

is the class activation map of target class which indicates

the decision evidence of the CNN model as identifying the

input image. In this paper, we explore the usage of CAM

for person Re-ID in twofold. 1) We utilize CAM to locate

discriminative visual cues, based on which a learning prin-

ciple aiming to augment the CAM is proposed to enhance

the Re-ID model. 2) Inspired by the CAM, we propose the

RAM for interpreting the ranking results in the test stage.

3.2. Overlapped Activation Penalty

For each training image I with label t, where t is the in-

dex of the target class. I passes through N branches respec-

tively to obtain CAM, i.e., M i ∈ R
h×w×C , for each branch

i. The t-th channel of M i, i.e., M i
t ∈ R

h×w, corresponds to

the activation map of class t, and we use it to further obtain

ai to specify the image regions that i-th branch focuses on.

Here, we traverse all spatial locations (x, y) of M i
t with the

Sigmoid function to obtain a mask ai ∈ R
h×w.

ai(x, y) =
1

1 + exp(−(M i
t (x, y)− σi))

(5)

where the threshold σi is the k-th largest element of M i
t .

The Sigmoid function maps the elements larger than σi in

M i
t approximately to 1 while others to 0.

Since we aim to guide different branches to activate dif-

ferent image regions, the non-zero regions of ai in differ-

ent branches should be non-overlapping. To achieve that,

the overlapped activation penalty is proposed to measure

the area of the overlapped regions of ai, i ∈ {1, 2, ..., N},

which is defined as follows:

Loap =
1

N

∑

x,y

(

a1 ⊙ a2 ⊙ · · · ⊙ aN
)

(6)

where ⊙ denotes element-wise multiplication and N is the

number of branches.

3.3. Objective function

After global average pooling over the class activation

maps M i, we obtain the class scores Si in branch i, which

is further normalized by softmax function into a probabil-

ity distribution yi ∈ R
C . The identification loss in branch

i is calculated as the Cross Entropy between the predicted

probability yi and the ground-truth.

Li
id = −log(yit), i ∈ {1, 2, . . . , N} (7)

where t is the index of the target class, and the Li
id, i ∈

{1, 2, . . . , N}, are summed to obtain the identification loss

of the CAMA model, i.e., Lid =
∑N

i=1 L
i
id.

The final objective function for the CAMA model is the

weighted summation of Lid and Loap.

Ltotal = Lid + αLoap (8)

where α is the trade-off weight and we use α = 1 in all

experiments below. Loap prefers that the activated regions

of different branches are non-overlapping, while Lid guides

the CAMA model to activate the discriminative image re-

gions rather than the background.

In the test stage, the feature vectors in all branches

{f1, f2, ..., fN} generated by applying global average

pooling on the feature maps {F 1, F 2, ..., FN} are con-

catenated to obtain the final image representation f , i.e.,

f = [f̂1; f̂2; ...; f̂N ], where f̂ i denotes the L2 normaliza-

tion of f i.

3.4. Ranking Activation Map

Since the original CAM can not be implemented on the

person IDs that are unseen during the training stage. To

better interpret the ranking results, we propose the RAM,

which can reveal the associated visual cues between the

query and the gallery images. Here, we describe the pro-

cedure for generating ranking activation map.

Suppose that Fq and Fg correspond to the feature maps

of a query and a gallery image respectively. The fea-

ture representation is obtained by fq = GAP(Fq), fg =
GAP(Fg), where GAP denotes global average pooling.

Then L2 normalization is performed on f to obtain f̂ , i.e.,

f̂ = f√
〈f,f〉

= f
‖f‖ . The Euclidean distance between L2

normalized fq and fg is defined as

d(fq, fg) =

√

〈f̂q − f̂g, f̂q − f̂g〉

=

√

〈f̂q, f̂q〉+ 〈f̂g, f̂g〉 − 2〈f̂q, f̂g〉

=

√

2− 2〈f̂q, f̂g〉 =
√

2− 2
〈fq, fg〉
‖fq‖ ‖fg‖

(9)

where 〈�, �〉 indicates the inner product of two vectors. Since

the similarity is inversely proportional to the distance, we
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Figure 3: Illustration of Ranking Activation Map (RAM),

where ⊗ denotes spatial attention. fq is the feature of query

image and Fg denotes feature maps of a gallery image.

can observe from Eq. (9) that the similarity between query

and gallery image should be proportional to
〈fq,fg〉
‖fg‖

, which

can be further formulated as

〈fq, fg〉
‖fg‖

=
〈fq, 1

h×w

∑

x,y Fg(x, y)〉
‖fg‖

=

∑

x,y〈fq, Fg(x, y)〉
h× w × ‖fg‖

=

∑

x,y

〈fq,Fg(x,y)〉
‖fg‖

h× w
=

∑

x,y R
q
g(x, y)

h× w
(10)

where Rq
g(x, y) =

〈fq,Fg(x,y)〉
‖fg‖

indicates the score that the

spatial grid (x, y) of g contributes to the final similarity be-

tween q and g. Specifically, Rq
q is obtained by replacing fg

with fq in Eq. (10). We call {Rq
q , R

q
g| g ∈ {1, 2, ...NG}} the

ranking activation maps correspond to the query image q,

where NG is the number of gallery images. By simply up-

sampling the RAMs to the size of the corresponding images,

we can visualize the importance of the image regions lead-

ing to the ranking result.

Based on the above approach, we show some examples

of the RAMs generated using baseline model in Fig. 4.

Here, we only show top 10 images in the ranking results. In

Fig. 4(a), the RAM of query image (1st column) indicates

that the most salient feature is related to the green pocket.

For another query, the most salient region corresponds to

the red backpack (Fig. 4 (b)). The RAMs of top 10 gallery

images highlight the regions of green pocket and parts with

red color for the two queries respectively, which are seman-

tically consistent with the corresponding query images.

4. Experiments

4.1. Datasets and Evaluation Metrics

Experiments are performed on DukeMTMC-reID [32],

Market-1501[49], CUHK03 [25]. We adopt the Cumula-

tive Matching Characteristic (CMC) [12] and mean Average

Precision (mAP) [49] for performance metrics. All the ex-

perimental evaluations follow the single-query setting [49].

Market1501 contains 1,501 identities captured by 5 high-

resolution and one low-resolution cameras with different

viewpoints, 12,936 images from 751 identities as used for

query top 10 in ranking list

(a)

(b)

Figure 4: The RAMs highlight the associated visual fea-

tures between query and gallery images for two ranking list

in Market1501, i.e., the green pocket in (a) and red objects

in (b). Images with green and red boundary denote true pos-

itive and false positive respectively.

training, 3,368 query images and 19,732 gallery images

from another 750 identities for testing. DukeMTMC-reID

contains 1,404 identities, 16,522 images for training, 2,228

query images, and 17,661 gallery images. Training and

test sets both consist of 702 identities, and person bounding

boxes are manually cropped. CUHK03 consists of 13,164

images of 1,467 persons, and each identity only appears

in two disjoint camera views. We adopt the new train-

ing/testing protocol proposed in [53], in which 767 iden-

tities are used for training and 700 for testing. CUHK03

offers both labeled and detected bounding boxes, we per-

form experiments on both of them.

4.2. Implementation Details

Model. We adopt the ResNet-50 that pre-trained on Im-

ageNet [8] as the baseline model, which has a convolu-

tional layer (named conv1) and four residual blocks, i.e.,

conv2 ∼ 5. The common base model in Fig. 2 consists

of conv1 ∼ 4 and the conv5s in different branches do not

share parameters. The classifier weights are randomly ini-

tialized. Note that we follow the setting in PCB [42] that re-

moves the last spatial down-sampling operation in ResNet-

50 to increase the spatial size of output feature maps.

Preprocessing. The input image size is fixed to h × w =
256× 128 for all experiments on three Re-ID datasets. For

data augmentation, standard random cropping and horizon-

tal flipping are used during training.

Optimization. We use Pytorch [31] to implement the

CAMA model. The Adam [21] optimizer is used with batch

size of 32. We firstly fine-tuning classifier weights, i.e., W i

in Fig. 2, for 10 epochs with the learning rate gradually in-
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Methods mAP R-1 R-5 R-10

BoW [49] (ICCV15) 20.8 44.4 63.9 72.2

H WARCA [18] (ECCV16) 45.2 68.1 76.0 -

KLFDA [20] (Arxiv16) 46.5 71.1 79.9 -

SVDNet [41] (ICCV17) 62.1 82.3 92.3 95.2

MGCAM [38] (CVPR18) 74.3 83.8 - -

AOS [14] (CVPR18) 70.4 86.5 - -

PSE [33] (CVPR18) 69.0 87.7 94.5 96.8

G MultiScale [6] (ICCV17) 73.1 88.9 - -

MLFN [3] (CVPR18) 74.3 90.0 - -

GCSL [4] (CVPR18) 81.6 93.5 - -

SGGNN [35] (ECCV18) 82.8 92.3 96.1 97.4

DGRW [34] (CVPR18) 82.5 92.7 96.9 98.1

MSCAN [23] (CVPR17) 57.5 80.3 - -

DLPA [48] (ICCV17) 63.4 81.0 92.0 94.7

PAN [51] (Arxiv17) 63.4 82.8 - -

L
(+

G
)

PDC [39] (ICCV17) 63.4 84.1 92.7 94.9

GLAD [44] (MM17) 73.9 89.9 - -

JLML [26] (IJCAI17) 65.5 85.1 - -

PABR [40] (ECCV18) 79.6 91.7 96.9 98.1

HA-CNN [27] (CVPR18) 75.7 91.2 - -

PCB [42] (ECCV18) 81.6 93.8 97.5 98.5

Proposed approach (N=2) 83.9 94.2 97.8 98.4

Proposed approach (N=3) 84.5 94.7 98.1 98.8

Table 1: Market-1501 evaluation, where handcrafted fea-

ture based methods (H), global feature based methods (G)

and methods employing local feature with or without global

feature (L(+ G)) are compared. The best performances are

in bold, - means no reported results are available and N = 2
denotes the proposed approach with 2 branches.

creased from 3 × 10−6 to 3 × 10−4 and then training the

whole CAMA model for another 50 epochs with the ini-

tial learning rate 3 × 10−4 multiplied by 0.1 after every

20 epochs. On Market-1501 (12,936 training images), the

baseline and the 3-branch CAMA model consumes about 3

and 4 hours respectively with a NVIDIA TITAN X GPU.

4.3. Comparison with State­of­the­art Methods.

We compare the 2-branch and 3-branch CAMA with

the state-of-the-art methods. The comparison methods can

be separated into handcrafted feature based methods (H),

deep learning methods with global feature (G) and deep

learning methods employing local feature with or without

global feature (L(+G)). The results show that the proposed

method achieves the best performance. Note that: 1) Com-

pared to methods with part-level feature, our method ex-

ceeds PCB+RPP [42], which demonstrates the advantage

of the proposed CAM-based multi-branches CNN approach

to learn diverse features and enhance the discriminative ca-

pability of Re-ID models. 2) Compared to methods with

global feature, our methods outperform the MLFN, which

uses a fusion architecture to fuse features of multiple se-

mantic levels. Furthermore, the idea of MLFN is compati-

ble with our idea of mining more discriminative features at

the high-level, which will be further studied in the future.

Methods mAP R-1

H

BoW [49] (ICCV15) 12.2 25.1

LOMO+XQDA [28] (CVPR15) 17.0 30.8

SVDNet [41] (ICCV17) 56.8 76.7

AOS [14] (CVPR18) 62.1 79.2

PSE [33] (CVPR18) 62.0 79.8

G MultiScale [6] (ICCV17) 60.6 79.2

MLFN [3] (CVPR18) 62.8 81.0

GCSL [4] (CVPR18) 69.5 84.9

SGGNN [35] (ECCV18) 68.2 81.1

DGRW [34] (CVPR18) 66.7 80.7

PAN [51] (Arxiv17) 51.5 71.6

L
(+

G
)

JLML [26] (IJCAI17) 56.4 73.3

PABR [40] (ECCV18) 69.3 84.4

HA-CNN [27] (CVPR18) 63.8 80.5

PCB [42] (ECCV18) 69.2 83.3

Proposed approach (N=2) 72.0 84.8

Proposed approach (N=3) 72.9 85.8

Table 2: DukeMTMC-reID evaluation. Rank-1 accuracies

(%) and mAP (%) are reported, where N = 2 denotes the

proposed method with 2 branches.

Methods
labeled detected

mAP R-1 mAP R-1
H

BoW+XQDA [49] (ICCV15) 7.3 7.9 6.4 6.4

LOMO+XQDA [28] (CVPR15) 13.6 14.8 11.5 12.8

IDE-C+XQDA [53] (CVPR17) 20.0 21.9 19.0 21.1

IDE-R+XQDA [53] (CVPR17) 29.6 32.0 28.2 31.1

TriNet+Era [54] (Arxiv17) 53.8 58.1 50.7 55.5

G SVDNet [41] (ICCV17) - - 37.3 41.5

MGCAM [38] (CVPR18) 50.2 50.1 46.9 46.7

AOS [14] (CVPR18) - - 43.3 47.1

MultiScale [6] (ICCV17) 40.5 43.0 37.0 40.7

MLFN [3] (CVPR18) 49.2 54.7 47.8 52.8

L
(+

G
) PAN [51] (Arxiv17) - - 34.0 36.3

HA-CNN [27] (CVPR18) 41.0 44.4 38.6 41.7

PCB [42] (ECCV18) - - 57.5 63.7

Proposed approach (N=2) 64.2 66.1 61.0 64.3

Proposed approach (N=3) 66.5 70.1 64.2 66.6

Table 3: CUHK03 evaluation with the setting of 767/700

training/test split on both the labeled and detected images.

Rank-1 accuracies (%) and mAP (%) are reported.

4.4. Discussion with attention based mechanisms.

Although recent video-based work [24] has proposed to

diversify attention maps, there are three main differences

between [24] and the proposed model. 1) The motivation

of [24] is to discover a set of discriminative body parts for

avoiding the features from being corrupted by occluded re-

gion. While we aim to discover rich or even redundant

discriminative features from limited training set so as to

enhance the discriminative capability of Re-ID model on

unseen test set. 2) On the learning process, [24] connects

multiple attention modules with one single branch CNN, so

the learned attention modules can be regarded as a set of

part detectors relying exactly on the same set of CNN fea-
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Models
Market1501 DukeMTMC-reID CUHK03(detected)

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

IDE + BN 78.8 91.0 96.2 97.6 66.1 79.8 90.5 92.8 56.4 57.7 74.1 82.0

MltB + Lid 79.0 91.6 96.5 97.8 65.8 80.7 91.1 93.3 57.6 58.5 75.9 83.6

MltB + Lid + Loap 84.5 94.7 98.1 98.8 72.9 85.8 93.1 94.9 64.2 66.6 82.7 87.9

Table 4: Component analysis of the proposed method on three datasets, where mAP, rank-1, rank-5, and rank-10 accuracies

are reported. MltB denotes the multi-branch network with 3 branches. The IDE+BN model is formulated as Eq. (3).

tures. While we adopt a multi-branch network to extract

more features from training data, where the CAM is used

for diversifying the discriminative features not part detec-

tors. 3) In test stage, the attention modules learned by [24]

or other attention based methods, e.g., [17], DLPA [48] and

the RPP in [42], are also used to calculate the attention maps

of test images for weighting the CNN features. While the

learned CAM coefficients cannot be used in test stage, as

the test person IDs are unseen in the training set. So only

the multi-branch CNN networks are adopted to extract fea-

tures without any additional weighting operations. Thus,

from the above three aspects, our method is significantly

different from [24] and other attention based methods.

4.5. Effect of Overlapped Activation Penalty.

In this section, we investigate the effect of each com-

ponent of our method by conducting analytic experiments

on three person Re-ID datasets. The results are presented

in Table. 4. The difference between MltB+Lid and the

baseline model (IDE+BN) is that MltB+Lid extends a se-

ries of ordered branches. However, MltB+Lid achieves

only a small margin over the baseline model, which indi-

cates that the visual features captured by different branches

are almost the same. We can see from the results that

MltB+Lid + Loap achieves significant improvement over

MltB+Lid, which validates the powerful capability of the

proposed overlapped activation penalty to force the new

branch to focus on non-overlapping image regions so as to

discover diverse and discriminative visual features.

4.6. Parameters Analysis

In this section, we carry out experiments to study the

effect of the threshold σi in Eq. (5) and the number of

branches N , where σi is the k-th largest value of corre-

sponding activation map M i
t .

Influence of k. The larger k means the larger the ac-

tivated regions reserved by each branch after the Sigmoid

function Eq. (5). Since the last spatial down-sampling op-

eration in ResNet-50 is removed, the CAMA model outputs

activation map with 128(16×8) spatial grids. As illustrated

in Fig. 5, the mAP and rank-1 accuracies fluctuate in a small

range when k is less than 26, but sharply decrease when k is

greater than 26 ( 26
128 ≃ 20%). That is because when k be-

comes too large, the overlapped activation penalty will en-
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Figure 5: Influence of k, where the number of branches is

set to 2. The (k, mAP) and (k, rank-1) results are reported.
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Figure 6: Impact of number of branches N , where mAP and

Rank-1 accuracy are compared.

force the current branch to activate non-discriminative im-

age regions, e.g., the background, as the most discriminative

image regions have been reserved by the previous branch.

The number of branches N . According to Fig. 6, the

CAMA model achieves the best mAP and rank-1 perfor-

mance when N reaches to 3 on Market1501. The proposed

approach does not always perform better with the increase

of N , which indicates that the number of discriminative

visual cues of person ID is finite. As N increasing to 3,

the CAMA model is able to discover new cues on the im-

ages. When N is too large, the activated region of the new

branch cannot satisfy the constraints of Lid (discriminative)

and Loap (non-overlapped with the image regions activated

by the old branches) simultaneously. In this case, the new

branch is harmful to the optimization of the overall network,

thus the performance will reach to a peak value at a certain

value of N, as illustrated in Fig. 6.

4.7. Why does CAMA Work?

We aim to make the multiple branches of the CAMA

model focusing on different regions of the input image dur-

ing the training stage. However, do these branches pro-

1395



(a) Baseline (b) Ours

5 80 1 2 3 4 6 7 9 10 11 1312 1514 16 1817 2019 21 22
(c) Person IDs in the test set of Market1501.

Figure 7: tSNE visualization of the baseline model and our

method on the Market1501 test set. Different numbers indi-

cate different identities (Zoom in for best view).

branch 1st 1st+2nd 1st+2nd+3rd

mAP 79.0 82.7 84.5

rank-1 90.9 93.5 94.7

Table 5: Quantitative analysis on Market1501. For the pro-

posed approach with 3 branches, 1st+2nd denotes only the

1st and 2nd branch are used for testing.

duce different visual features in the test stage? Qualitative

and quantitative analysis are conducted on the proposed ap-

proach with 3 branches.

Qualitative analysis. In Fig. 8, the RAMs reveal the

associated visual cues between query and gallery images

for each branch. We can observe that for the same input

query image, the features learned by different branches are

indeed complementary. Specifically, the features learned

by 1st branch, i.e., f1
q , are most related to the black shorts

which also activates the 1st ranking list, while the 2nd and

3rd branches focus on the head and the lower body respec-

tively. It indicates that the proposed CAMA model indeed

captures diverse discriminative visual cues, thus the con-

catenated version of features from different branches pro-

duces a better ranking result. The RAMs of i-th branch in

Fig. 8 are generated by replacing fq in Eq. (10) with f i
q .

Quantitative analysis. With the aim of capturing rich

visual cues for person Re-ID, the branches in the CAMA

model are forced to activate different discriminative image

regions. Table. 5 indicates that the mAP and rank-1 accu-

racy perform better as more number of branches are used for

testing. Specifically, the first branch of the CAMA model

only achieves 79.0% mAP and 90.9% rank-1 accuracy, as

more branches are combined for testing, the mAP, and rank-

1 accuracy gradually rise to 84.5% and 94.7% respectively.

Furthermore, we choose a number of person IDs with

similar appearance from the test set of Market1501 to visu-

alize the feature distribution by t-SNE [29]. These persons

are wearing purple clothes with small inter-person variation

as shown in Fig. 7 (c). By comparing Fig. 7 (a) and (b), we

query top 10 in ranking list

Figure 8: Qualitative analysis. The ranking results and

RAMs of different branches and their aggregation result.

The features from different branches are indeed comple-

mentary. Images with green and red boundary denote true

positive and false positive respectively.

can observe that for identities that are hard distinguished by

the baseline model, the proposed approach can better dis-

tinguish them, e.g. the 9-th, 15-th, and 16-th identities.

5. Conclusion

In this work, we propose a CAMA model to discover

discriminative and diverse visual features for person Re-ID

which can enhance traditional global representation. The

proposed overlapped activation penalty can be implemented

flexibly in an end-to-end training framework. Moreover, we

introduce RAM to visualize the associated visual features

between query and gallery images in a ranking list. With the

help of CAM and RAM, we show that the CAMA model

indeed acquires more discriminative features, which gives

qualitative validations of the learned Re-ID model clearly

and gives some insights into the interpretability of person

Re-ID model. In this work, we show that it is a promis-

ing way to enhance the Re-ID model from a respect of in-

terpretable CNN. In the future, we will extend the idea on

more recognition tasks, e.g., zero-shot learning (ZSL).
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