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ABSTRACT

Person re-identification (ReID) has achieved rapid improve-
ment recently. However, exploiting the model in a new
scene is always faced with huge performance drop. The
cause lies in distribution discrepancy between domains, in-
cluding both low-level (e.g. image quality) and high-level
(e.g. pedestrian attribute) variance. To alleviate the problem
of domain shift, we propose a novel framework Proxy Task
Learning (PTL), which performs body perception tasks on
target-domain images while training source-domain RelD, in
a multi-task manner. The backbone is shared between tasks
and domains, hence both low- and high-level distributions are
deeply aligned. We experimentally verify two proxy tasks,
i.e. human parsing and attribute recognition, that prominently
enhance generalization of the model. When integrating our
method into an existing cross-domain pipeline, we achieve
state-of-the-art performance on large-scale benchmarks.

Index Terms— Person Re-identification, Cross-domain,
Multi-task, Human Parsing, Attribute Recognition

1. INTRODUCTION

Person re-identification (ReID) aims to associate images of
some given person across cameras, which has wide appli-
cation in video surveillance, e.g. cross-camera tracking and
pedestrian retrieval, efc. Just as with many other tasks, RelD
is confronted with the problem of domain shift. That is, when
the model trained on one domain is exploited to another, it
tends to have a huge performance drop. In RelID, one domain
usually refers to images captured from a group of nearby cam-
eras. This is really frustrating if the model is confined to the
scene where the training images come from.

The cause of insufficient cross-domain generalization lies
in both low- and high-level distribution discrepancy between
domains. In terms of low-level variance, lighting condition
and image quality are frequently observed. As illustrated in
Fig. 1, CUHKO3 has lighting much dimmer than the other two
datasets. The former seems captured near corridors of teach-
ing buildings, while the latter are taken from outdoor scenes.
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(a) Market1501 [1]

(b) CUHKO3 [2]

(c) Duke [3]

Fig. 1: Distribution discrepancy between scenes raises an ob-
stacle for ReID model to generalize across domains.

In terms of high-level distinction, environment composition
and pedestrian attribute are factors easy to identify. For ex-
ample, due to different seasons, Market1501 contains pedes-
trians usually wearing shorts, while DukeMTMC-reID shows
frequent trousers and coats.

To alleviate the problem of domain shift, researchers pro-
pose Unsupervised Domain Adaptation (UDA) to adjust the
model using target-domain images, which do not have iden-
tity labels. Three mainstream groups of approaches exist in
the literature. 1) GAN Based Methods. The first group align
the two domains in image space [4, 5, 6]. They typically
utilize Generative Adversarial Networks (GAN) to transfer
source-domain images into the style of target domain before
training a normal ReID model. These GAN based methods
consider low-level factors like image quality and lighting, as
well as high-level factors like background composition. How-
ever, attribute distribution of pedestrians is not addressed.
Moreover, designing constraints for adversarial training re-
quires heavy efforts. 2) MMD Methods. By contrast, the sec-
ond group align distributions in feature space. It is also able to
tackle both low- and high-level elements, because the whole
network would be updated in back propagation. Maximum
Mean Discrepancy (MMD) is widely used to pull close two
domains [7]. Nonetheless, it only takes low-order statistics
into account, making it inadequate to encompass the under-
lying gap. 3) Clustering-and-Finetuning Methods. The final
group put domain discrepancy aside, concentrating on min-
ing pseudo identity labels in target domain [8, 9, 10, 11]. The
representative pipeline is to iterate between label mining and
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model finetuning till convergence. The initial performance of
the source model on target images determines neighborhood
purity and thus is highly related to the final performance it can
achieve.

In this paper, we propose a novel framework named Proxy
Task Learning (PTL) to overcome the discrepancy between
domains. Specifically, we perform body perception tasks on
target-domain images while training ReID on source domain,
in a multi-task manner. Perception tasks facilitate compre-
hension of the model on target pedestrians, working as a
proxy between domains. Compared with GAN based meth-
ods, our strategy pays attention to both background and hu-
man body, with an easy-to-implement framework. Compared
with MMD, ours is not limited to low-order statistics. When
considering clustering-and-finetuning methods, the proposed
approach is able to obtain an initial model more compatible
with target domain and facilitate further finetuning. Our ex-
periment shows that human parsing and attribute recognition
are two effective proxy tasks, which prominently improves
generalization of the model. The parsing and attribute la-
bels on target domain are obtained by inferring target images
using models trained on corresponding public datasets, i.e.
COCO Densepose [12] and PETA [13]. As a consequence,
our method comes with no extra labeling cost.

Our contribution is summarized as follows. First, we pro-
pose the Proxy Task Learning (PTL) framework to mitigate
the discrepancy between source and target domains. To the
best of our knowledge, we are the first to perform percep-
tion tasks on target images as domain adaptation. Second,
we verify human parsing and attribute recognition as effective
proxy tasks, through extensive experiments. Finally, when in-
tegrated with existing clustering-and-finetuning pipeline, our
model achieves state-of-the-art performance on large-scale
benchmarks.

2. RELATED WORK

Person Re-identification. Feature representation is a critical
factor to distinguish between identities. Some researchers de-
vise specific backbones [14], taking into account lightweight
implementation and multi-scale features. In order to ob-
tain fine-grained representations, a line of works extract fea-
tures from multiple uniformly divided regions on the feature
map [15]. Part annotations, e.g. keypoints and segmentation
masks, have also proven to be effective for extracting fine-
grained features or part alignment [16]. Ranking loss func-
tions and sampling strategies are also proposed to effectively
optimize the feature space [17].

Cross-domain Person Re-identification. Researchers
propose to adapt ReID model using unlabeled target-domain
images, also known as Unsupervised Domain Adaptation
(UDA). We categorize these approaches into groups. 1) GAN
Based Methods. SPGAN [4] employs CycleGAN with care-
fully designed generator constraints to transfer source im-

Source Domain Person Re-identification

Proxy Tasks

Human Parsing  Attr. Recog.
! Female

i | Red Coat

! | BlueJeans !

Fig. 2: Overview of our framework. We perform body per-
ception on target-domain pedestrians while training RelD on
source domain, sharing the same backbone.

ages into style of target images. Then a usual ReID model
is trained on these translated images for a model suitable for
the target domain. CR-GAN [5] synthesizes images by aug-
menting each source pedestrian with various contextual im-
ages from target domain. 2) MMD Methods. Lin et al. [7]
propose to align distributions of both identity features and
attribute features between domains, using Maximum Mean
Discrepancy (MMD). 3) Clustering-and-Finetuning Methods.
Fan et al. [8] use the model trained on source domain to ex-
tract features for target images, perform clustering, assign
pseudo labels, and finally finetune the model in a supervised
manner. The process in target domain is iterated till conver-
gence. Fu et al. [10] conduct clustering for upper-, lower-
and whole-body features independently to obtain three label
sets, and finetune the model with three loss functions simul-
taneously. 4) Other methods mainly focus on self-supervised
constraints. TJ-AIDL [18] formulates relationship between
identity and attribute. ECN [19] utilizes the assumption that
there is no identity duplication inside a batch of randomly se-
lected target images. CASCL [20] emphasizes on the premise
of camera invariance.

3. METHODOLOGY

Our framework is illustrated in Fig. 2. It performs body per-
ception tasks on target pedestrians at the same time of training
source domain RelD, sharing the same backbone. Intuitively,
there is strong correlation between body analysis and RelD.
For example, human parsing distinguishes foreground from
background and localizes each part of the body, which should
be an underlying capability of RelD to extract features over
body for discrimination. Attribute recognition not only learns
features of clothes style, texture, and color, but also involves
age, gender, body shape, etc. These are useful information
for recognizing an identity. We resort to these related body
tasks, with the assumption that if the model behaves well in
perceiving pedestrians of target domain, it would be benefi-
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cial for generalizing the RelD model. These tasks work as a
bridge between two domains. Consequently, we term them as
proxy tasks and our framework as Proxy Task Learning (PTL).
By sharing all layers of the backbone between domains and
tasks, both low- and high-level variance of domains are tack-
led. We obtain human parsing labels and attributes for target
images with models trained on COCO [12] and PETA [13]
respectively. Since these two datasets are publicly available,
our method does not introduce extra labeling cost.

3.1. Source-domain Identification

We denote the source training set as {(Z?,y;li =

2,...,N®}, where N*® is the number of source images, and
77 is the i-th image with identity label y;. There are C' iden-
tities in total and y; € {1,2,...,C}. For training RelD, we
adopt the strong baseline proposed by Luo et al. [21]. Con-
cretely, each image is first transformed into feature maps by
the backbone (Conv1~Conv5). Then we perform Global Max
Pooling (GMP) to obtain a feature vector f; € R”. Batch
Normalization (BN) is further applied upon the result to ob-
tain feature g; € RP”. Treating each identity as a class,
we adopt a multi-class classifier consisting of cascaded Fully
Connected (FC) layer and Softmax layer. We denote the clas-
sifier as 1) : RP — RY, which predicts a probability distri-
bution p; = v(g;) for image Z¢, where p; € R®. The iden-
tification loss is negative log likelihood of the output node
corresponding to ground truth, and the loss over a batch is
computed as

iyi) ey

zde -

in which N} is number of images in a batch.

To learn discriminative features, triplet loss [17] is also
utilized, which directly optimizes distance in feature space.
Following Luo et al. [21], the triplet loss is applied to features
before BN. Consider a triplet (75,75, %), where (Z7,75,)
are from the same person and (Z7}, Z%;) from different identi-
ties, which are named positive and negative pairs respectively.
The loss resulting from this triplet is

Lii(Zin, iz, Iiz) = [0 + d(fi1, fiz) — d(fir, fiz)]+, (@)

in which § = 0.3 is a margin and d(-, -) is euclidean distance.
The triplet loss inside a batch is thus calculated as

L= Z L;,(Tin, Lia, Tis). 3)
b 11,412,413

According to BatchHard [17] sampling strategy, the number
of triplets in a batch is the same as batch size IV;).

3.2. Target-domain Proxy Tasks

We denote the target training set as {(Z},S;, A;li =
1,2,...,N'}, where N is the number of images, and Z}

True  False  True
0.85 0.97 0.03
0.20 0.02 0.98
0.02 092 0.08
0.09 0.64 0.36

True False  True
0.29 0.99 0.01
0.21 0.03 0.97
0.38 0.60 0.40
0.67 0.56 0.44

hairLong
personalMale

upperBodyRed

lowerBodyleans

Fig. 3: Examples of human parsing and soft attribute labels
predicted by models trained on COCO [12] and PETA [13],
respectively. Each attribute has two classes True and False.

is the ¢-th image with its parsing label being a 2-dim map
S; € {l1,...,K}*W and attribute label being A;. A;
is a list of probability distributions, and its j-th distribution
A; ; € RMi is the soft labels for the j-th attribute, where M;
is the number of classes of the attribute, and j Ai,j = 1.
There are N, attributes in total, and j € {1,2,..., Ngsr }-
Here our soft labels for each attribute are obtained from the
corresponding Softmax layer of the model trained on public
attribute dataset. Note that we do not discretize them into
one-hot labels. As discovered in Knowledge Distillation, soft
supervision maintains the underlying structure of label space
and would be advantageous for optimization. Examples of
parsing and attribute labels are illustrated in Fig. 3.

For a target image Z!, we represent the output of back-
bone as & € RH¥/2xW/2_ Upon the backbone, we connect a
human parsing head and N, attribute recognition heads to
perceive body information of the target person. The human
parsing head contains (Deconv, BN, ReLU, Conv, Softmax)
layers, denoted by ¢. It predicts the part label of each pixel
on the feature map, with result G; = ¢(&;), G; € REXH*W,
Here K = 8 is number of parts plus one, since background
is viewed as one class as well. For clarity, we denote the
vector at spatial location (m,n) of G; as ¢ € R¥, and the
corresponding label on S; as v € {1,2,..., K}. The human
parsing loss for image I at this location is negative log likeli-
hood E‘;Lp(z', m,n) = —log(q.). Hence the parsing loss over
the whole batch is

Ny
ﬁzp NtHW Z Z Zﬁhp i,m,n) 4)

i=1 m=1n=1

For perceiving attributes of the target person, Global Av-
erage Pooling (GAP) is first conducted upon &;, obtaining
e; € RP. Each attribute has a head consisting of (FC, BN,
ReLU, FC, Softmax) layers. Denoting prediction of the j-th
head for image I} as h] 6 RMi | the corresponding attribute

lossis Ly, (4,7) = — Zl | A jilog(hl,), i.e. the weighted
sum of negative log likelihoods. The overall attribute loss in
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the batch is thus computed as

Nb attr

SO Ll (i), )

i=1 j=1

L. =
attr NEAT
Ny Nam

3.3. Multi-task Learning

We share the backbone between source and target domains,
and tasks of identification and body perception. In each it-
eration, a batch of source images are fed to the network to
calculate identification loss L7,  and triplet loss £7.;. Then
a batch of target images are processed, with human parsing
loss £}, and attribute loss L, computed. All these loss
functions are summed up as

L= )‘?de’cfde + )‘frz’cfm ’Chp attrﬁfzttr (6)

where A7, , A7, Aj, and A, are hyper parameters to bal-
ance between different tasks, which are setto 1, 1, 0.1 and 1
by default. The gradient of final loss w.r.t. network parameters
is then back propagated. Eventually the network is optimized
to not only distinguish between source identities, but also to
perceive body structure and appearance of target persons. As
a result, the model would be compatible with target distribu-
tion and generalize better. When training is finished, human
parsing and attribute heads are removed.

Discussion. Previous works APR [22] and TJ-AIDL [ 18]
also implement multi-task learning of identification and at-
tribute recognition. However, the two tasks are carried out
on source images, without explicit attribute learning on target
images. As demonstrated in later experiments, our semantic
comprehension of target persons plays an important role in
domain adaptation.

attr

4. EXPERIMENT

Implementation Details. Our implementation is based on
Pytorch. ResNet-50 is adopted as the backbone, and Adam
as the optimizer. Learning rate is set to 0.00035 and reduced
with a factor of 10 at epochs 160 and 280 respectively. The to-
tal training epochs is 480. Warmup [21] is applied at the early
stage of training as well. A source batch contains 64 images
from 16 identities, each with 4 images sampled; Target batch
adopts random sampling with batch size 32. Image resolution
for network input is width x height = 128 x 256. Ran-
dom flipping and low-level image processing, e.g. brightness
and contrast perturbation, are used as data augmentation dur-
ing training. Datasets and Evaluation Metrics. We perform
cross-domain experiments between three large-scale datasets,
Market1501 [1], CUHKO3 [2] and DukeMTMC-relD [3]. For
CUHKO3, we adopt the detected subset and the new protocol
proposed by Zhong et al. [23]. The dataset statistics are sum-
marized in Table 1. Two common evaluation metrics are used,
mean Average Precision (mAP) [1] and Cumulative Match
Characteristic (CMC) [24]. For CMC, we report the Rank-1,
-5 and -10 accuracy.

Dataset Training Query Testing Gallery
Market1501 [1] 751712936 | 750/3,368 750715913
CUHKO3 [2] 767/7,365 | 700/ 1,400 700/5,332
DukeMTMC-relD [3] | 702/16,522 | 702/2,228 | 1,110/ 17,661

Table 1: Statistics (#Identities / #lmages) of RelD datasets.

Market—Duke Duke— Market

mAP| Rl R5 RI0O|| mAP RI R5 RIO
BL 29.1| 499 63.8 69.9| 27.8| 58.2 752 38lI.1
BL+HP? 32.7| 54.1 66.8 72.3| 34.5| 65.6 809 857
BL+Attr 35.6| 56.8 70.2 75.1|| 32.1| 63.3 787 84.1
BL+HP!+Attrt | 36.2| 574 71.0 75.8|| 34.4| 66.1 80.9 858
BL+SSGt 4571 64.7 783 81.7|| 379| 66.2 819 86.9
PTL+SSGT 52.6| 714 82.8 86.7| 46.0| 741 87.2 91.5

Table 2: Effectiveness of proxy task learning. Market— Duke
means Market1501 is source dataset and DukeMTMC-relD is
target dataset. PTL is equivalent to BL+HP+Attr’.

4.1. Substantial Improvement of PTL over Baseline

We first implement a baseline which is only trained on source
images, i.e. training with only £7,, and L3,.; in Equation 6,
denoted by BL in Table 2. Then we train the baseline
with various combinations of proxy tasks on target domain,
either with human parsing (BL+HP?), attribute recognition
(BL+Attr"), or both (BL+HP!+Attr’). We have following ob-
servations. First, both BL+HP! and BL+Attr’ have substantial
improvement over BL. For example, BL+HP' increases mAP
by 3.6% and 6.7% for Market—Duke and Duke— Market re-
spectively, while BL+Attr" increases 6.5% and 4.3%. Sec-
ond, BL+Attr" is superior to BL+HP' for Market—Duke but
worse for Duke—Market. Finally, combining two proxy tasks
achieves best performance, indicating that both body structure
and appearance are crucial for feature learning. The perfor-
mance boost of BL+HP'+Attr! over BL is 7.1% mAP (7.5%
Rank-1) under Market—Duke, and 6.4% mAP (7.9% Rank-
1) under Duke—Market. The significant improvement veri-
fies the efficacy of our proxy task learning framework.

4.2. Integration with Clustering-and-Finetuning

As previously discussed, the final performance of clustering-
and-finetuning (CFT) methods is highly related to the initial
state of the model in target domain. To verify this assump-
tion, we integrate either baseline or PTL (BL+HP'+Attr")
with an existing CFT pipeline and compare the results. The
CFT method we adopt is SSG [10]. In order to speed up the
process of SSG, here we omit the neighbor reranking step and
feature extraction of source images. This simplified version of
SSG is denoted by SSGT. The results are recorded in Table 2.
We first observe that BL+SSGT largely improves upon BL by
clustering and finetuning, which demonstrates the benefit of
rectifying neighborhood relationship in target domain. Fur-
ther, comparing PTL+SSGt with BL+SSGf, we see that our
method achieves improvement with a large margin. In mAP
(Rank-1), the superiority brought by PTL is 6.9% (6.7%) for
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Market—Duke

mAP | RI R5 RIO
BL 29.1 [ 499 638 69.9
BL+HP® 306 | 520 66.1 71.1
BL+HP® 327 | 541 668 723
BL+HP*+HP* 343 | 554 693 739
BL+A(tr® 307 | 51.5 653 709
BL+Attr? 356 | 568 702 75.1
BL+Atr* +Atrt | 354 | 56.1  70.3 75.0

Table 3: Relationship with source-domain body perception.

Market—CUHK
mAP | R R5 RIO
BL 133 [ 154 276 347
BLA+Attrbera ot 189 | 205 373 46.1
BL4AtUETA, onehot | 18:3 | 205 359 452
BLAAttrhAp o 172 | 184 333 430

Table 4: Component analysis for attribute recognition.

Market—Duke and 8.1% (7.9%) for Duke—Market. The re-
sults implies that, by performing perception tasks on target
pedestrians, our method results in a model more compatible
with target domain and facilitates the following finetuning.

4.3. Relationship with Source-domain Body Perception

Considering the close relation between RelD and body per-
ception tasks, we wonder whether training these tasks on
source domain has an influence on cross-domain generaliza-
tion, and whether it is still beneficial to keep training these
tasks on target domain. To answer these questions, we in-
volve source-domain human parsing and attribute recognition
in training. Specifically, for human parsing, we train it ei-
ther only on source images (BL+HP?), only on target images
(BL+HP?), or on both (BL+HP*+HP"). Similar experiments
are conducted for attribute recognition as well. The results are
reported in Table 3. Comparing BL+HP?® and BL+Attr® with
BL, we notice that source-domain perception tasks indeed
benefit cross-domain testing. However, we can observe much
more improvement brought by target-domain tasks, by com-
paring BL+HP' with BL+HP?, and BL+Attr’ with BL+Attr®.
The indispensable role of target-domain tasks is to perceive
and adapt to distribution of target pedestrians, which could
not be accomplished with only source images.

4.4. Component Analysis for Attribute Recognition

In other sections of the paper, we use model trained on PETA
to predict soft attribute labels for ReID images. Here we ex-
periment with discretized one-hot labels. Besides, we also
try an alternative attribute dataset RAP [25]. The results are
shown in Table 4. We first notice that all three variants im-
prove upon baseline considerably. In addition, the superiority
of BL+AItrppra sof OVer BLAAUTpETA one-no; VeTifies the ratio-
nality of choosing soft label as supervision. Finally, compar-
ing BL+Attr§AP’ soft and BL+Attrf,ETA, «oft> We conclude that

Fig. 4: Two ranking examples under Duke—Market setting.
The query image is on the left, and top-8 gallery images are
listed on the right. In each case, the first row is returned
by BL, and second row by BL+HP'+Attr’. Green and red
surrounding boxes denote having same and different identity
with query, respectively.

PETA is a better choice. We utilize similar number of at-
tributes of PETA and RAP, i.e. 105 vs. 96. Nonetheless, PETA
consists of ten different scenes, while RAP mainly involves
limited indoor scenarios. The huge diversity of PETA images
may result in a more robust attribute model, which could pre-
dict attributes on ReID images with higher quality and in turn
facilitates our PTL training.

4.5. Qualitative Analysis of Ranking Result

To qualitatively demonstrate the benefits of our method, we
illustrate two ranking cases where BL+HP'+Attr’ shows su-
periority over BL, as in Fig. 4. In the first case, the baseline
model fails to retrieve most of correct results, even if these
images are with similar body pose and thus appearance as
query. This implies undesirable model collapse caused by do-
main shift. Through adaptation, our method BL+HP'+Attr"
successfully returns much more target images. In the second
case, the baseline mistakenly matches with multiple pedes-
trians wearing similar T-shirts. With the perception of body
structure and attributes of target-domain persons, our method
manages to reject those images with different gender or with
obvious color discrepancy.

4.6. Comparison with State of the Art

To compare with state-of-the-art methods, we combine PTL
with SSG [10], denoted by PTL+SSG. The results un-
der various settings are reported in Table 5. The ap-
proaches we compare include GAN based methods (SP-
GAN [4], SBSGAN [6], CR-GAN [5]), MMD methods
(MMFA [7]), clustering-and-finetuning methods (PUL [8],
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Publication Market— Duke Duke— Market
mAP R1 mAP R1

PUL [8] TOMMI18 16.4 30.0 20.5 45.5
TJ-AIDL [18] CVPR18 23.0 443 26.5 58.2
MMFA [7] BMVCI18 24.7 453 27.4 56.7
SPGAN [4] CVPR18 26.2 46.4 26.7 57.7
CASCL [20] ICCV19 30.5 51.5 35.6 64.7
SBSGAN [6] ICCV19 30.8 53.5 27.3 58.5
ECN [19] CVPR19 40.4 63.3 43.0 75.1
MAR [9] CVPR19 48.0 67.1 40.0 67.7
CR-GAN [5] ICCV19 48.6 68.9 54.0 71.7
SSG [10] ICCV19 534
PAST [11] ICCV19 72.4 54.6 78.4
PTL+SSG (Ours) 60.7 76.2 69.0 87.3

Publication CUHK—Market | CUHK—Duke

mAP R1 mAP R1

PUL [8] TOMM18 18.0 41.9 12.0 23.0
SPGAN [4] CVPR18 19.0 423 - -
SBSGAN [6] ICCV19 28.5 57.6 27.8 47.7
CR-GAN [5] ICCV19 56.0 78.3 47.7 67.7
PAST [11] ICCV19
PTL+SSG (Ours) 73.1 88.9 58.5 75.6

Table 5: Comparison with state-of-the-art methods under var-
ious settings. The 1st, and 3rd highest scores in each col-
umn are marked by red, and blue, repectively.

MAR [9], SSG [10], PAST [11]), as well as those devising
novel cross-domain constraints (TJ-AIDL [ 18], CASCL [20],
ECN [19]). Our method achieves highest performance under
all these cross-domain settings, surpassing previous methods
by a large margin. Concretely, in terms of mAP, the advan-
tage over 2nd highest method reaches 6.4% (60.7 vs. 54.3)
for Market—Duke, 11.7% (69.0 vs. 58.3) for Duke—Market,
15.8% (73.1 vs. 57.3) for CUHK—Market, and 6.7% (58.5
vs. 51.8) for CUHK—Duke. In terms of Rank-1, the cor-
responding boosts are 3.2% (76.2 vs. 73.0), 7.3% (87.3 vs.
80.0), 9.4% (88.9 vs. 79.5), and 5.7% (75.6 vs. 69.9), respec-
tively. The significant improvement verifies the efficacy of
our proxy task learning framework.

5. CONCLUSION

In order to increase the generalization ability of ReID model
from source to target domain, we propose a Proxy Task
Learning framework that performs body perception on target-
domain pedestrians while training ReID on source domain,
sharing the same backbone in a multi-task manner. We choose
human parsing and attribute recognition as two proxy tasks,
considering their strong relation to RelD. Extensive experi-
ments are conducted to verify the efficacy of our framework,
demonstrating the important role of perceiving target pedes-
trians to minimize domain gap. Our final model achieves
state-of-the-art performance on large-scale benchmarks.
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