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ABSTRACT

Person re-identification (ReID) has obtained great progress
in recent years. However, the problem caused by occlusion,
which is frequent under surveillance camera, is not suffi-
ciently addressed. When human body is occluded, extracted
features are flooded with background noise. Moreover, with-
out knowing location and visibility of parts, directly match-
ing partial images with others will cause misalignment. To
tackle the issue, we propose a model named HPNet to extract
part-level features and predict visibility of each part, based
on human parsing. By extracting features from semantic part
regions and perform comparison with consideration of visi-
bility, our method not only reduces background noise but also
achieves alignment. Furthermore, ReID and human parsing
are learned in a multi-task manner, without the need for an
extra part model during testing. In addition to being efficient,
the performance of our model surpasses previous methods by
a large margin under occlusion scenarios.

Index Terms— Person Re-identification, Partial, Occlu-
sion, Human Parsing, Multi-task

1. INTRODUCTION

Person re-identification (ReID) [1] aims at matching person
images across cameras to determine whether they are depict-
ing the same identity. It has attracted increasing attention in
recent years, due to its great potential in video surveillance
tasks e.g. person retrieval, cross-camera tracking and activ-
ity recognition, efc. Recent progress in RelD is mainly con-
centrated on full-body images, which are filtered detection
or manually cropped. In real application, however, environ-
mental occlusion and degraded localization of detectors are
both inevitable, especially under surveillance scenario, as il-
lustrated in Fig. 1. When body occlusion occurs, the extracted
features are flooded with noise. Moreover, directly matching
two images without taking into account part location and vis-
ibility would cause spatial misalignment.

To cope with the problem, researchers resort to part-level
features. Zheng et al. [2] first manually crop out visible body
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(a) Partial-REID [2]

(b) Partial-iLIDS’ 19 [3] (c¢) Occluded-REID [4]

Fig. 1: Body occlusion caused by environment or detection
error is frequent in surveillance scenario. First row contains
occluded persons, second row holistic ones.

region. Then a two-stream model with local-to-local and
local-to-global matching is developed. The first is based on
sparse coding, and the second on sliding window matching.
This method requires manually cropping, and sliding window
is time consuming. He ef al. [5] formulate the problem as
reconstructing each patch of query image using patches of
gallery image. It still requires solving reconstruction for each
pair of query and gallery images during testing, whose time
consumption is exaggerated when a large number of queries
are required. Sun et al. [0] utilize self-supervised learning to
predict location and visibility of each part. The drawback is
that self supervision assumes too much of body alignment in
training set. Miao et al. [7] make use of body keypoints to
pool part features and indicate visibility. Nevertheless, it is
necessary to pass each image through an extra pose estima-
tion model during testing.

Considering the benefits brought by part assistance, as
well as the necessity of being efficient, we devise a multi-task
model with co-training of ReID and human parsing. In our
method, four body parts are separately learned, with a branch
for each part. The segmentation task shares backbone with
RelD, predicting one mask for each part. Predicted masks are
not only used for pooling RelD features from corresponding
regions, but also for deducing part visibility. During train-
ing, RelD loss is calculated only for visible parts. In testing,
for a pair of images, we first compute their distance for each
part. Then the overall distance is calculated as the average of
their commonly visible parts. Compared to previous methods,
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ours does not require strict alignment in training set or an in-
dependent part model during testing. Moreover, our distance
computation of image pairs can be simply accomplished by
matrix multiplication, which is scalable with the number of
queries. In other words, we achieve a comprehensive model
in an efficient way.

Since part annotations are not available in RelD datasets,
we train a human parsing model on COCO [£] and use the
trained model to predict pseudo labels on RelD images. The
preparation is finished before multi-task training begins. In
order to improve the localization precision of the final model
under various occlusion scenarios, we think about how we
can make full use of COCO images which shows large diver-
sity in human pose and comes with ground truth part labels.
Owing to the multi-task characteristic of our framework, we
further propose to train human parsing on COCO images as a
regularization task.

The efficacy of the approach is verified on four commonly
used datasets, Partial-REID [2], Partial-iLIDS’ 18 [5], Partial-
iLIDS’19 [3], and Occluded-REID [4]. We are able to reach
best performance on all these datasets. Extensive experiments
are also conducted to analyze design choice of main compo-
nents. The contribution of this paper is three-fold.

e To the best of our knowledge, we are the first to adopt
human parsing to address the problem of occlusion in
RelID and verify its efficacy.

e We propose a multi-task implementation, which is not
only efficient but also enables training precise part lo-
calization.

e Our model achieves state-of-the-art performance on
commonly used benchmarks, surpassing previous
methods by a large margin.

2. RELATED WORK

Person Re-identification (ReID). In order to improve the
discrimination ability of ReID models, Sun et al. [9] propose
to evenly partition feature maps into rectangles and pool fine-
grained features within each region. Considering that back-
bones originally designed for ImageNet classification may not
be the best choice for RelD, Zhou et al. [10] develops their
own backbones with multi-scale features and lightweight im-
plementation. During image matching, key points and part
segmentation masks are often used to extract fine-grained fea-
tures and facilitate part alignment [11]. Sampling methods
and loss formulations are also critical for optimizing a dis-
criminative feature space [12].

Occluded RelID. Zheng et al. [2] first propose the prob-
lem of occluded RelD, or partial ReID. They formulate the
protocol as searching for a partially occluded query image
among a gallery set of full-body images. A model consisting
of two streams is developed accordingly, which takes manu-
ally cropped query image and full gallery image as input. In
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Fig. 2: Overview of our method. We formulate a multi-task
framework where RelD and human parsing are simultane-
ously trained, with part-level feature learning and visibility
consideration. For clarity, triplet loss upon concatenated part
features is omitted in the figure.

the first stream, both images are partitioned into patches to
perform local-to-local matching. In the second stream, the
query directly works as a template searching upon the gallery
image in sliding window manner. He et al. [5, 3] formulate
the problem as reconstructing each patch of query image us-
ing patches of gallery image, in the feature space. Recon-
struction error thus indicates image similarity in a negatively
correlated way. Foreground mask is further proposed to elim-
inate the distraction from background patches [3]. Under the
assumption that training images in regular RelD datasets are
well aligned, Sun et al. [6] employ self-supervised learning to
predict location and visibility of each part. A set of part fea-
tures are predicted and visibility is considered during distance
computing. With the assistance of a pose estimation model,
Miao et al. [ 7] generate gaussian masks centered at keypoints
for extracting local features.

Although segmentation masks have been used in
SPRelD [13] to assist alignment, our framework has clear dis-
tinctions. First, our model is able to tackle the problem of oc-
clusion by disentangling parts and predicting visibility. More-
over, the implementation for discriminative feature learning is
carefully designed accordingly. Finally, our multi-task frame-
work avoids additional segmentation model during testing.

3. METHODOLOGY

We implement a multi-task framework, as shown in Fig. 2,
where RelD and human parsing share the same backbone and
are simultaneously trained. The four body parts are 1) head,
2) torso and arms, 3) upper legs, and 4) lower legs and feet,
as illustrated in Fig. 3. It is intuitive that four parts contain
distinct feature sets. For example, the first part mainly in-
volves features like hair length, color and shape, as well as
facial characteristics, efc., while the fourth part is related to
shoes types, color, patterns as well as texture of lower part
of trousers, efc. From this perspective, we propose to model
each part with a separate branch, to encourage learning dis-
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entangled part features. As a result, we initiate four par-
allel Conv5 modules without sharing parameters. In each
branch, upon Conv5, a lightweight head performs segmen-
tation, whose result indicates the region of the correspond-
ing part. The segmentation mask with binary value is then
multiplied with Conv5 feature maps, with a following global
max pooling layer to obtain the part feature vector. The vis-
ibility of one part is computed as the maximum value of the
mask, either O or 1. During training, RelD loss is only im-
posed on visible parts; In testing, distance of a pair of images
is calculated using their commonly visible parts. Our model
possesses the merits of high efficiency and being effective in
learning discriminative features. Details are given below.

3.1. Segmentation Based Part Features

Formally, we denote a training set as {(Z;,v;,S;)|i =
1,2,...,N}, where N is the number of images, and Z;
is the i-th image with its identity label being y;. S; =
{8},82,82,8}} is the binary part labels, where S/ €
RH XW H and W being output resolution of Conv5 layer.
Note that (pseudo) part labels are predicted by a COCO-
trained human parsing model, as in Fig. 3. There are C
identities in total and y; € {1,2,...,C}. For image Z,,
the Convl~Conv4 layers first transform it into feature maps
which are further processed by four parallel Conv5 layers into
Fl € RPXHXW i ¢ {12 3 4}, where D, H, W are num-
ber of channels, height and width respectively, with j index-
ing parts. A part parsing branch consists of {3x3 Conv, BN,
ReLU, 1x1 Conv, Sigmoid} layers, taking F; as input and
predicting a probability map Qg € RT*W_ To indicate re-
gion of the part, we discretize gg’ into a binary mask C?f =
1{G] > T}, where T = 0.5 is a threshold and 1{-} is an in-
dicator function which gives 1 if the condition is satisfied, and
0 otherwise. In order to extract features of the j-th part, we
first multiply the binary mask with each ConvS feature map,
ie. ij—]:j ®G! for k € {1,2,..., D}, in which Q)
represents element wise multiplication. The resulting tensor
! has the same size as F;. Then we perform Global Max
Pooling (GMP) and Batch Normalization (BN) upon the re-
sult, to obtain a feature vector BN(GMP(#?)) — f;, where
fj € RP is a D-dim vector for the j-th part of the i-th im-
age. The predicted v151b111ty of that part is determined by
v] = mam(gj) where v] € {0, 1} has binary value. During
testing, distance of a pair of images (Z;1,Z;2) is the average
over their commonly visible parts, computed as

Fi— fL2 1V1 Uzz . i g
d(Tn, Tiz) = |z;* iy vkl >0,
400, otherwise
‘ o
where ff 7 1s a L2-normalized feature vector. An il-

lustration is glven in Fig. 4. Note that, when the two images
share no visible parts, we set their distance to +oo, since no
hint is available to predict them as the same person.
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Fig. 3: Demonstration of part labels of COCO dataset [8] (1st
row), and predicted labels on Market1501 [14] (2nd row).

3.2. Loss Functions

Identification Loss formulates each identity as one class, uti-
lizes multi-class classifier, and adopts cross-entropy loss to
optimize the network. As demonstrated in PCB [9], employ-
ing an independent ID classifier for each part benefits learning
discriminative part features. The explanation is that if features
in each region alone are able to distinguish between identi-
ties, then they would be expressive enough. Following this
paradigm, we construct four classifiers g/ : RP? — R%,j €
{1,2, 3,4}, each containing an FC and Softmax layer. The
Jj-th part feature vector is taken as classifier input to obtain a
probability distribution p? = ¢7(f/), where p’ € RY. The
final identification loss is computed as

zde - N Z Z IOg y, (2)

=1 j=1

in which N, is number of images in a batch. Note that, only
those visible parts contribute to the loss.

Triplet Loss. Identification loss relies on classifier as a
bridge to learn identity distinguishable features, while triplet
loss [12] directly imposes constraint on sample feature dis-
tance to pull close instances of the same identity and push
away those from different persons. According to previous
practice [15], it is a recommended choice to apply triplet loss
to features before BN, which is GMP(#?) in our model. We
denote it by h7 € RP. The loss of a triplet (Zi1, Zia, Zi3),
where (Z;1,Z;2) is a positive pair with y;1 = ;2 and
(Zi1,Z;3) a negative pair with y;1 # 3, is calculated as

Ti1,Li2, Liz) __
£( i1 54+12,413
tri

=[M +d(I11,Lg) d(Ii17Ii3)]+, (3)

in which M = 0.3 is a margin, and distance of an image pair
is computed as

Z?:1||hz.1 zszzl Via : 4 Jo.J
TR o Af D vy >0
B j=
d(Zi1,Z2) = :
( 115 12) —0Q, else lfyl1 = Y2
400, else

“)
When a pair of images do not share visible parts, we have
to exclude them from participating in triplet loss. Since we
use Batch-Hard [12] to form triplets, we can simply set the
distance to —oo if it is a positive pair, and +o0 if negative, so
that the pair will not be chosen when selecting hardest positive
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Fig. 4: Illustration of vanilla and visibility aware image dis-
tance (Equation 1). For the former, visibility is neglected; for
the latter, only commonly visible parts are considered.

and negative. The triplet loss inside a batch is thus computed

as
Lo — Nib 3 [T T o), )
i1,i2,i3

According to Batch-Hard sampling strategy, there are exactly
Ny, triplets inside a batch of [V, images. Note that, different
from independent identification loss for each part, our triplet
loss considers four parts of an image at the same time.

Human Parsing Loss. As mentioned above, the pre-
dicted parsing probability for j-th part of image Z; is G] €
R¥*W | with the corresponding ground truth being S7. For
clarity, we denote value of G/ and S at location (m,n)
by r and ¢ respectively, where m € {1,...,H} and n €
{1,..., W} . The binary cross entropy (BCE) between r and
t is described as

Ci’gém’" = —[tlogr + (1 —t)log(l —7)]. (6)

Since foreground region only occupies small portion of each
ground-truth mask, the remaining belonging to background.
It is a typical case of imbalance between positive and nega-
tive samples, for which Focal Loss [16] has proven to be an
effective solution. A balancing variable 1 based on predicted
probability is utilized, as follows.

v=>0-r)t+r(l-1t), @)

n=lat+(1—a)1—0]v. ®)

In the equation, o = 0.25 and v = 2 are two hyper parame-
ters. The overall parsing loss of a batch is given below.

1 N, 4 1 H W o
Loen =3, 22 5 gg 2L 2 L™ O

i=1 j=1 i m=1n=1

where 3 87 means the number of positive pixels on S7.
Precise human parsing is critical for localizing body parts,
the following feature extraction, and final matching. To
this end, we propose to additionally train human parsing on
COCO images which not only come with human annotated

Dataset Training Query Testing Gallery
Market1501 [14] 751712936 | 750/3,368 | 750/15913
Partial-REID [2] - 60 /300 60 /300
Partial-iLIDS’ 18 [5] 119/119 119/119
Partial-iLIDS’19 [3] 107 /238 1097238
Occluded-REID [4] 200/1,000 | 200/ 1,000

Table 1: Statistics (#Identities / #lmages) of RelD datasets.

part labels but also encompass large pose diversity and var-
ious occlusion scenarios. We denote the parsing loss on
COCO images by L2¢°.
Final Loss. The overall loss of the multi-task framework

is given by

L= Aideﬁide + )\tm'LtT’i + )\seglcseg + )\zzgoﬁgggoa (10)
where Aige, Atri, Aseg and Agggﬂ are constants to balance the
importance of different tasks, which are set to 1, 0.1, 1, and
1 respectively by default in our experiments. Forward and
backward computation is first done for a RelD batch, and then
the following COCO batch. The gradients of two batches are
summed up before updating the parameters.

4. EXPERIMENT

4.1. Implementation Details

We use ResNet-50 [17] as the backbone, changing the stride
of Conv5 from 2 to 1 and discarding the original classifier.
SGD optimizer with a momentum of 0.9 and weight decay of
Se-4 is adopted. We initialize learning rates of the backbone
and newly added layers to 0.01 and 0.02 respectively, which
would be multiplied by 0.1 after 240 epochs. The model is
trained for 300 epochs in total. A batch of ReID images are
composed of 16 identities each with 4 images randomly sam-
pled. A batch of 32 COCO images are also fed to the net-
work to compute parsing loss £20°. We resize images to
width x height = 128 x 384. Random flipping is used as
data augmentation during training.

4.2. Datasets and Evaluation Metrics

Following previous works, we train the model on Mar-
ket1501 [14], which mainly consists of holistic persons,
and test it on occluded datasets Partial-REID [2], Partial-
iLIDS’18 [5], Partial-iLIDS’19 [3] and Occluded-REID [4].
We train segmentation model DANet [18] on COCO Dense-
pose [&] and then predict parsing masks on Market1501, used
as ground truth S in Section 3, before training our multi-
task model. Statistics of RelD datasets are listed in Ta-
ble 1. Two common evaluation metrics are used, Cumula-
tive Match Characteristic (CMC) [19] for which we report the
Rank-1, -3, -5 and -10 accuracy, and mean Average Precision
(mAP) [14]. Single-gallery-shot and multi-gallery-shot set-
tings [5] are involved, i.e. there is (are) one or multiple images
of the query person in gallery set, respectively. Multi-gallery-
shot setting is utilized by default unless otherwise declared.
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Publication Partial-REID | Partial-iLIDS’18
R1 R3 R1 R3
AMC+SWM [2] ICCV1s 373  46.0 | 21.0 32.8
DSR [5] CVPRI18 569 785 | 639 74.8
VPM [6] CVPR19 67.7 819 | 65.5 74.8
HPNet (Ours) 80.6 91.7 | 689 80.7

Table 2: Comparison with SOTA under singlle-gallery-shot
setting. Ist and 2nd highest scores are marked by red and
blue, respectively.

Publication Occluded-REID
R1 mAP
AMC+SWM [2] ICCV15 31.1 27.3
PCB [9] ECCV18 41.3 38.9
DSR [5] CVPR138 72.8 62.8
FPR [3] ICCV19 78.3 68.0
HPNet (Ours) 87.3 77.4

Publication Partial-REID | Partial-iLIDS’19

R1 mAP R1 mAP
AMC+SWM [2] ICCV15 343 313 | 387 313
PCB [9] ECCV18 563 547 | 46.8 40.2
PGFA [7] ICCV19 68.0 618 - -
DSR [5] CVPR18 73.7  68.1 64.3 58.1
FPR [3] ICCV19 81.0 76.6 | 68.1 61.8
HPNet (Ours) 857 81.8 | 72.0 58.9

Table 3: Comparison with SOTA under multi-gallery-shot
setting.

4.3. Comparison with State-of-the-art Methods

The comparison with state-of-the-art (SOTA) algorithms is
reported in Table 2 and 3. The methods we compare include
AMC+SWM [2], PCB [9], DSR [5], VPM [6], PGFA [7] and
FPR [3]. AMC+SWM first crops out visible body region in
query image. Then a two-stream matching process is carried
out, including local-to-local matching using dictionary learn-
ing, and global-to-global matching in sliding window manner.
PCB uniformly partitions feature maps into stripes to extract
part-level features. Both DSR and FPR treat the query image
as reconstruction of patches from a gallery image, and uti-
lize the reconstruction error as indication of similarity. VPM
training part localizer with self-supervised constraint, assum-
ing full body and alignment in training images. PGFA adopts
an additional pose model to predict body keypoints in order
to obtain local features. From Table 2 and 3, it is obvious
that our method achieves SOTA performance, surpassing pre-
vious algorithms by a large margin. Under single-gallery-
shot setting, we surpass VPM by 12.9% (80.6 vs. 67.7) and
3.4% (68.9 vs. 65.5) in Rank-1 on Partial-REID and Partial-
iLIDS’18, respectively. Under multi-gallery-shot setting,
we surpass previous best method FPR by 9.0% (87.3 vs. 78.3),
4.7% (85.7 vs. 81.0) and 3.9% (72.0 vs. 68.1) in Rank-1 on
Occluded-REID, Partial-REID and Partial-iLIDS’ 19, respec-
tively. Our mAP on Partial-iLIDS’19 is 2.9% (58.9 vs. 61.8)
lower than FPR, while those on Partial-REID and Occluded-
REID are 5.2% (81.8 vs. 76.6) and 9.4% (77.4 vs. 68.0)
higher. Note that Occluded-REID is four times the size of
Partial-iLIDS’19. In addition to being effective, our model

[ mAP [ Rl R5 RIO |

Baseline 540 | 62.1 793 852
HPNet, test w/o vis 548 | 464 826 944
HPNet, share ConvS | 763 | 86.5 936 963

HPNet, A\¢i =0 743 | 844 932 96.0
HPNet, AS20° =0 709 | 824 902 934
HPNet 774 | 873 939 963

Table 4: Ablation study of our model on Occluded REID.

is efficient since we do not require an extra part localization
model in testing (Ours vs. PGFA), and not requiring time-
consuming pairwise reconstruction (Ours vs. FPR).

4.4. Ablation Study

In this section, we conduct ablation study on Occluded REID
to analyze components of our model.

HPNet vs. Baseline. In case of occlusion, features tend
to be contaminated by noisy information. Moreover, without
knowing which elements are missing, matching images with
these features would cause severe misalignment. To verify the
assumption, we implement a global feature based baseline.
Concretely, it only consists of a branch with global max pool-
ing to capture features over the whole image. During train-
ing, there is no human parsing loss, while other details are the
same as HPNet. We denote it by Baseline in Table 4. We ob-
serve a huge performance drop, i.e. 23.4%, 25.2%, 14.6% and
11.1% in mAP, Rank-1, Rank-5 and Rank-10, respectively. It
shows the importance of using part-level features and taking
into account part visibility. The retrieving results of two meth-
ods are also illustrated in Fig. 5. The baseline is distracted by
the plant which occludes the query person, returning images
with grass and trees in background. HPNet instead focuses on
the visible parts of the person and makes correct decision.

Testing w/ or w/o Part Visibility. During testing, the dis-
tance of a pair of images is calculated as Equation 1, i.e. av-
eraging over those parts visible in both images. We compare
with the vanilla version where distance of two images is just
the average of four part distances, neglecting part visibility.
The two versions are illustrated in Fig. 4. The testing score
of the vanilla version is reported in Table 4, with notation
“HPNet, test w/o vis”. The scores drop drastically when dis-
carding the visibility deduced from the segmentation masks,
with Rank-1 even much lower than Baseline.

Separate vs. Shared Conv5 Modules. Different seman-
tic parts contain distinct characteristics. For example, region
of head encompasses hair length, color and facial attributes,
while torso region is closely related to clothes logos and pat-
terns, efc. In our model, we initiate an independent branch for
each part to disentangle the feature learning of parts. For com-
parison, we experiment with four branches sharing the same
parameters, represented by “HPNet, share Conv5” in Table 4.
We see that sharing parameters leads to a drop of 1.1% in
mAP and 0.8% in Rank-1. Since the scale of decreasing is
not too serious, and that sharing Conv5 has the advantage of
reducing storage and inference time, it could be a good choice
in practice to balance between performance and efficiency.
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Fig. 5: Retrieving example of Baseline and HPNet.
(red) bounding box: (different) identity as query.

Training w/ or w/o Triplet Loss. Identification loss treats
each person as a class and adopts a Fully Connected Layer to
perform classification. However, during testing the classifier
is stripped off and only the features are used for calculating
similarity between images. Consequently, it raises a discrep-
ancy between training and testing objectives. By contrast,
triplet loss directly optimizes similarity relationship between
images in feature space, which is consistent with image rank-
ing in testing phase. Intuitively, combining triplet loss with
identification would enjoy the diversity of both and achieve
a more discriminative feature space. We carry out an exper-
iment where only identification loss is involved, denoted by
“HPNet, Ay; = 07 in Table 4. We observe that triplet loss
brings prominent improvement, i.e. 3.1% (77.4 vs. 74.3) in
mAP and 2.9% (87.3 vs. 84.4) in Rank-1.

Training w/ or w/o COCO. Precise part localization is
crucial for extracting features from corresponding regions, es-
pecially under occlusion scenarios. In order to enhance the
human parsing capability of the model, we pass COCO im-
ages through the model to train with human parsing loss, i.e.
L3520 in Equation 10. The benefit is two-fold. First, part la-
bels of COCO images are annotated by human, which would
stabilize model optimization. Second, it encompasses a vari-
ety of poses, with ubiquitous body occlusion, which largely
diversifies the training data for human parsing. The part seg-
mentation results of the model trained with or without COCO
images are illustrated in Fig. 6, where we can observe obvi-
ous improvement in segmentation quality brought by COCO.
RelD performance of the model trained without COCO im-
ages is recorded in Table 4, i.e. “HPNet, AS0? = 0”. The
finer part localization brings significant improvement in ReID
scores, increasing mAP by 6.5% (77.4 vs. 70.9) and Rank-1
by 4.9% (87.3 vs. 82.4).

5. CONCLUSION

In this paper, we address the problem of occlusion in RelD.
To get rid of noise and misalignment caused by occlusion, we
adopt human parsing to extract part-level features and indi-
cate part visibility for matching. A multi-task framework is
implemented to avoid the need for an extra part model dur-
ing testing. Extensive experiments confirm the efficacy of our
method, which surpasses previous algorithms by a large mar-
gin on occlusion benchmarks.

RN YNICH A
NEN YHCH NS
TN A
(TN N

Fig. 6: Human parsing results predicted by the model trained
without (1st row) or with (2nd row) COCO images.
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